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Fluctuations in spin nematics 

A V Chubukov 
Institute for Physical Problems, USSR Academy of Sciences, 117334 Moscow, 
ul. Kosygina 2, USSR 

Received 2 May 1989 

Abstract. Fluctuation effects in nematic-type phases in quantum systems of spin 1 and 9 are 
examined. The analogue of the Mermin-Wagnertheoremis formulated and the perturbation 
theory is shown to be logarithmically divergent under certain conditions. The low-energy 
excitations depend on the parity of 2s. 

1. Introduction 

Interest in fluctuation effects in isotropic magnetic systems has been greatly revived in 
the last few years. In recent literature there have been many investigations of quantum 
effects in ID [l-51 and in some 2D [6] antiferromagnets. In particular, the ground state 
of the ID Heisenberg antiferromagnets is believed to depend crucially on the parity of 2s; 
for integers S, quantum fluctuations destroy not only long-range but also orientational 
ordering, i.e. the antiferromagnet remains in the paramagnetic phase even at T = 0, 
while, for odd half-integers S the orientational ordering at T = 0 is retained and the 
critical theory is that of the Wess-Zumino model with topological coupling k = 1 (and 
the conformal anomaly C = 1) independently of the value of S = n + 1. 

It is the main aim of the present paper to investigate the role of fluctuations in 
magnetic systems with somewhat different types of ordering at T = 0 (in 2~ and higher 
dimensions), when the averaged microscopic value of the site spin is equal to zero ( ( S )  = 
0), but quadrupolar ordering is present, i.e. ( S : )  = ( S ; )  # (St). This structure, which 
was called an axially symmetrical spin nematic [7], appears to be the ground state in the 
intermediate region between ferromagnetic and antiferromagnetic phases in the so- 
called generalised quantum spin models described by the isotropic Hamiltonians con- 
taining besides the usual Heisenberg exchange interaction SI * SI + also monomials 
of higher order [8,9]. We recall that the generic spin S exchange Hamiltonian is a 
polynomial 

2s 

and all exchange integrals J ,  are generally of the same order of magnitude. 

on general grounds not appealing to any concrete model. 
We start with the discussion of some principle fluctuation effects in nematic states 
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The nematic structures arise as a result of spontaneous breakdown of continuous 
symmetry: the fixation of the selected axis for quadrupolar correlators. The cor- 
responding order parameter is a real unit vector n, and the states with n and -n are 
equivalent (the order parameter space is the projective plane P2).  Accordingly, the bare 
excitation spectrum contains two identical Goldstone branches (two angles, fixing the 
position of the unit vector on half the sphere). This fact (and to be more exact, the 
existence of even a single Goldstone mode) enables us to formulate the analogues of the 
Mermin-Wagner theorem and its quantum version (the Coleman theorem): long-range 
quadrupolar ordering is impossible at T # 0 in 2D and ID spaces and at T = 0 in the ID 
case. However, this theorem does not tell us anything about how the correlations decay. 
It thus appears that this theorem does not allow us to answer the question of whether 
the correlation length is finite or not. 

One might expect the existence of two interacting Goldstone modes in nematic 
structures to be revealed in a logarithmic increase in the coupling constant g under 
renormalisation as happens for the usual Heisenberg antiferromagnet [3,4]. This 
increase, if also continued outside the region of applicability of perturbation theory, will 
lead to dynamic mass generation and, for a singlet ground state, to paramagnetism in 
the 2~ and ID systems at T # 0 and in ID systems even in the ground state. 

For integers S, this result, if correct, agrees with the Haldane conjecture for a 
Heisenberg antiferromagnet while, for odd half-integers S, a rigorous theorem exists 
maintaining that the ground state of the ID chain either is degenerate or has a gapless 
spectrum [lo]. Then it is reasonable to expect the difference between the ground states 
for the integer and the half-integer spin values. However, the nature of this difference 
has nothing to do with that in the Heisenberg antiferromagnet. In fact, in a ID anti- 
ferromagnet the difference arises on doubling of the unit cell, i.e. at the transition from 
the description in terms of site spins to the description in terms of the unit vector of 
antiferromagnetism [2,4]; as the total spin of each neighbouringpair is always an integer, 
for initially half-integers S the low-energy theory is given by the O(3) a-model with an 
additional topological 8-term with 8 = n(mod 2n). For half-integers S this term stops 
the initial logarithmic increase in the coupling constant. In contrast, nematic ordering 
arises at each site and the topological @-term does not appear. The ground-state depen- 
dence on the parity of 2S now turns out to be a direct consequence of the Kramers 
theorem. In fact, in the foregoing discussion about dynamic mass generation, we pre- 
sumed that the order parameter is a real unit vector n and the states with n and -n are 
equivalent but, according to the Kramers theorem, this is possible only for integers S. 
The calculations given below in 0 2 for S = 1 confirm that the nematic structure is 
characterised by a single essential coupling constant, which increases on renor- 
malisation. 

Alternatively, for half-integers S the wavefunction of separate spin is the odd-order- 
rank spinor. Hence, it is impossible to have an invariance concerning time reversal, i.e. 
the order parameter cannot be a real variable; as well as the vector part, it is also 
obligatory for it to contain a complex scalar reflecting the fixation of the rotation angle 
about the selected axis. In spin language this means the appearance of anisotropy for 
odd-order correlators. This additional breaking of the continuous symmetry is revealed 
in the appearance of the third Goldstone mode. Correspondingly, the order parameter 
space is P2@Ss , .  We stress that it differs from the projective plane P,-the order 
parameter space of non-collinear antiferromagnet. The calculations, given below in § 3 
for a model with S = 4, show that for the logarithmic perturbation theory, in passing to 
higher scales the interaction between equivalent Goldstone branches (associated with 
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P 2 )  increases, thus leading to dynamic mass generation, while the interaction of 
additional Goldstone branch with the other two decreases, and the additional Goldstone 
mode decouples. Thus the low-energy sector contains an additional massless branch of 
excitations. A similar mechanism causes critical behaviour to develop for the other half- 
integers S. Note that the difference between integers and half-integers S exists not only 
in ID chains at T = 0 but also in 2~ systems at finite temperatures. In the latter case there 
is a finite temperature of the Kosterlitz-Thouless-type transition for half-integers S. The 
correlation functions are presented in 8 3. It is clear that there are both exponentially 
and power-law decaying correlations. 

Another question is whether the process of dynamical mass generation immediately 
above the ground state for integers S really leads to a singlet ground state as happens in 
a ID antiferromagnet where the low-energy theory is given by the O(3) a-model [l] .  
Strictly speaking, in the perturbative approach we work with a simply connected order 
parameter space, i.e. we substitute P2 by Sz. Meanwhile, the first homotopy group for 
P2 is non-zero: n1(P2)  = 2,; so this substitution may be regarded as freezing of the 2, 
degree of freedom. Then it is reasonable to assume twofold degeneracy of the ground 
state which most probably corresponds to dimerisation. An example is the well known 
Majumdar-Ghosh ground state for S = 4 [ l l ] .  We cannot definitely answer whether 
quantum fluctuations in ID always transfer a nematic state into a dimerised state. In our 
opinion, both situations (singlet ground state and twofold degeneracy) are possible. This 
question is discussed in more detail in 0 2. 

The possibility of calculating the fluctuation effects demands, first of all, a concrete 
definition of the Hamiltonian, then knowledge of the procedure of bosonisation and, at 
least, weak non-ideality of the arising Bose gas. The ordinary transformations linking 
spin operators with a single boson are invalid since they assume dipole ordering. Mean- 
while, the transition from ferromagnetic or antiferromagnetic phases to the nematic 
phase is connected with the condensation of 2S-magnon bound states [12]. 

Thus it is convenient to explore the transformations linking spin S with 2S bosons; 
roughly speaking, each boson describes the transition from the ground state of a separate 
spin to one of the excited states. 

Below we shall explore the following transformations for S = 1 and S = # (the index 
of the site is omitted): 

where 

and 

s =  I: S,  = -i(a+b - b+a) 

S, = -i(b+ U - Ub) 

S, = -i(Ua - a+ U )  

U = (1 - a+a - bfb)1/2 

s = #: s, = -#(c+U1 + UlC) + i (b+b - a+a)  

s, = G ( a + U 1  + a+c)  + 2b+a + V 3 ( U 1 b  - c f b )  ( 2 )  
S- = G ( b +  U1 - b+c) + 2a+b + f i ( U 1 a  + C ' U )  
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where 
u1 = (1 - a+a - b + b  - C + C ) ~ ’ * .  

For S = 1 the transformation was first proposed in [9]. An analogous transformation 
although written in a slightly different manner was earlier developed in [13]. In both 
transformations (1) and (2) the physical states of a separate spin are represented by a 
vacuum state and the states with only one excited boson. The commutation relations 
together with the constraint s2 = S(S + 1) are satisfied in a physical subspace. As the 
matrix elements between physical and non-physical states are equal to zero, the accuracy 
of both transformations (1) and (2) is the same as that of the well known Holstein- 
Primakoff transformation for S = B ;  they are exact at T = 0 and at non-zero temp- 
eratures the kinematic interaction will cause the appearance of irrelevant exponentially 
small corrections (see e.g. [14]), which we shall not take into account. 

Moreover, for the simplification of calculations it is convenient to modify the form 
of the transformations, eliminating the radicals. This is done in complete analogy with 
the passage from the Holstein-Primakoff to the Dyson-Maleev transformation [ 151. 

The averaging of (1) and (2) over the vacuum state gives, for S = 1, 

( S i )  = 0 (St) = 0 ( S : )  = ( S ; )  = 1 ( 3 )  

and, for S = 4, 

(Si) = 0 (S?) = % 
(S2 = a ( S ? )  = 0 (S3,)  = 0. 

( S 2 )  = (s;) = 2 
(4) 

In both cases the averaged value of the site spin equals zero; the z axis singles out 
the anisotropy direction for the quadrupolar correlators but, also, for S = $ the cubic 
correlators are simultaneously anisotropic, and this causes the appearance of the 
additional Goldstone mode. 

The weakness of non-ideality of the Bose gas here implies the density of particles to 
be small because the interaction between bosons is always strong. We shall see below 
that this condition is valid near the point (S = 1) or the line (S = S) of the first-order 
transition from the ferromagnetic to the nematic phase. Accordingly, the closeness to 
the critical point (or line) indicates the small parameter of the problem. 

The organisation of the paper is as follows: § 2 is devoted to the generalised model 
for S = 1. The bosonic version of the spin Hamiltonian suitable for the nematic phase 
will be constructed and the fluctuation corrections to the excitation spectrum and 
quadrupolar components together with the renormalisation group equation for the 
coupling constant will be obtained. We shall also discuss the effect of the magnetic field 
and consider separately the renormalisation equations at the points where the nematic 
phase merges with the ferromagnetic or antiferromagnetic phase. At the end of this 
section we shall briefly discuss the role of fluctuations in the so-called ‘orthogonal’ 
nematic structure [8]-the other possible intermediate phase between the ferromagnetic 
and antiferromagnetic phases. The generalised model for S = 4 will be considered in 
detail in § 3 and special attention will be given to the nematic state (4). We shall carry 
out bosonisation and obtain the renormalisation group equations which will allow us to 
justify the statements made in § 1 and to predict the behaviour of various correlation 
functions. The main results of the work are summarised in 8 4. 
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Figure 1. T = 0 phase diagram of the generic S = 

1 model (in 2D and higher dimensions). The ferro- 
magnetic (FM) phase is stable at 5n/4 > y > n/2, 
the antiferromagnetic (AFM) phase at yo  > y > y l r  
the collinear nematic phase at 5n/4 < y < y1 and 
the orthogonal nematic phase at y o  < y < n/2. 
Without short-wavelength renormalisations, 
yo  = n/4 and y l  = 3 ~ 1 2 .  

2. Spin nematic with S = 1 

The most generic exchange Hamiltonian for S = 1 and short-range interaction can be 
parametrised by a single parameter y [2, 91: 

H = J cos y S /  * s [ + ~  + I s in  y Z (s/  - s ~ + ~ ) ~  ( 5 )  
1,6 I ,  6 

where 0 < y < 27~. For y = 0 or n, expression ( 5 )  reduces to the usual Heisenberg model. 
The stability regions of different phases at T = 0 (in 2~ or higher dimensions) are 
presented in figure 1. The ferromagnetic phase is stable at n/2 < y < 5n/4 [8,9,12]. 
The loss of stability may occur in two ways: at y = n/2 the whole branch of magnori 
(one-particle) excitations ~ f ) ( y )  = -12 cos y (1 - v k )  (2 is the coordination number) 
softens to zero, i.e. one-particle instability occurs for all k ,  while at y = 5n/4 
the instability is because of the softening of the two-particle bound state at k = 
~ J G .  At the critical point y = 5n/4 the dispersion of the soft two-particle branch 
E?)  = JZ(1 - vk)/V?coincides with E ! ) .  

The stability region of the antiferromagnetic phase can be determined only approxi- 
mately in that this phase contains strong zero-point vibrations. However, we again come 
across two different types of instability: one-particle instability, when the whole magnon 
branch softens to zero, and two-particle instability, when the two-particle bound state 
is lowered below the antiferromagnetic vacuum [4,9]. The extrapolation of the results 
obtained in the quasi-classical approximation (S 9 1) [4] to S = 1 determines the 
stability region of the antiferromagnetic phase as an interval y o  < y < yl;  at y = yo  = 
tan-l{4[1 - Xk(l  - v ’ ) ; / ~ ] } - ’ ,  one-particle instability occurs, while y = y1 = 
JG + taK1{4[1 - #Zk( l  - ~ 2 k ) ~ / ’ ] } - ~  is a critical point for two-particle instability. 

We focus our attention on the intermediate phases that are stable at 5n/4 > y > y1 
and y o  < y < n/2. We start with the first region. The elementary calculations show that 
at the lability point ( y = 5n/4) any symmetrised state with an arbitrary number of flipped 
spins (Sf = -1) relative to the ferromagnetic vacuum (S f  = 1) is an eigenstate with 
energy equal to that of the ferromagnetic state. In other words, the barrier between two 
ferromagnetic ground states disappears at the critical point. Hence, it is most likely that 
the state equally moved away from both ferromagnetic states (i.e. nematic state (3) in 
the redefined axes) to be the ground state below the critical point. We call this state a 
collinear nematic state. The bosonicversion of the spin Hamiltonian is obtained by using 
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the modified variant of the transformation (1). The result is (1 = k l ,  2 = k Z ,  etc) 

The conversion of momentum is presumed. 6 = tan y - 1 is the non-ideality par- 
ameter. At  6 = +0, i.e. at the transition pcint, the Hamiltonian evidently describes the 
system of two interacting ferromagnets with S = 4; zero-point vibrations are absent and 
(3) is an exact ground state. On passing into the nematic phase, zero-point vibrations 
arise and it becomes necessary to diagonalise the quadratic form. 

When this is done without anharmonic corrections, the resulting spectrum consists 
of two coinciding branches linear at small k :  

= ( - Jzcos  y ) ( l  + 6)'/*{(1 - v k ) [ l  - vk + 6(1 + vk)]}1'2. (7)  

At y y )  = 3n/2,  both branches undergo softening at the edge of Brillouin zone, leading 
to the transition into the antiferromagnetic state. Anharmonic effects shift the critical 
value of y + y l .  

1 using 
ordinary methods [ 16,171. The corresponding diagrams are presented in figure 2. Strong 
exchange interaction forces summarise the ladder sequence of diagrams that become 
virtually revealed in the renormalisation of non-diagonal terms in the quadratic form 

The anharmonic corrections to the spin-wave velocity were calculated at 6 

6 V k  Bk = 6[1 - w(1 - V k ) ]  (8) 
where 

-ZJ COS y w = &(O) 
k k 

and coincide with the Watson integral [15] at the critical point. Other total vertices 

I -' 
'&  Figure 2. Diagrams for the self- 

1; E 

energieswhichtake part in the spin- 
wave velocity renormalisation in 
the leading order in 6. 
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coincide with the bare vertices in the leading order in 6. The final answer is the following: 

& k  = Ck c = (-ZJCOS y>(26/Z)”2[1 + q ( 6 ,  T)]l /2  (9) 
where 

Here Ak = 1 - vk + 6, 8 k  = &k/(-ZJcos y ) .  An explicit expression for q ( 6 ,  T )  will be 
given below. 

Zero temperature and thermal fluctuations are responsible also for the renor- 
malisation of quadrupolar components. The corrections are fully expressed in terms of 
a number of particles above the condensate: 

(S2) = (s;) = 1 - N ( S : )  = 2N. 

An explicit dependence of N ( 8 ,  T )  = N1(6, 0) + N2(6 ,  T )  on 6 and T = 
T/(  -JZ cos y )  is as follows: 

( vT/ 1 2x2 (26  ) 312 3D 1 logarithmically divergent 1D 

N l ( 6 , O )  = Z6/8n 2D (12) 

[(V5/4)T’6 -lj2 

(3/2n) 3 / 2  T3l2 5 (f) 
logarithmically divergent 2D‘ 

N 2 ( 6 ,  T )  = 

\divergent 1D 

The divergence of N at finite temperatures in the 2~ and ID cases and at T = 0 in the 
ID case is the obvious reflection of the Mermin-Wagner theorem and its quantum version 
when applied to thenematic state. In contrast, the leading corrections to the spin-wave 
velocity are finite: 

q(67 = q 1 ( 6 7 0 )  + q 2 ( ’ ,  

6[(5w - 31/21 3D 

q1(6,  0) = (.5Z/Sn>6 ln(1/6) 2D 

(5/n)6 1D 

- (9V5n2/4>( T )  4 6 -512 

- 5 (3/2n) 3’2 ( T )  3’2 c(f) 
1 % 6 + T  

l + T + 6  

[ 
I 
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Nevertheless, as we shall see below, the next to the leading order corrections will be 
logarithmically divergent sometimes. Before passing to the discussion of this question, 
we shall briefly discuss the effect of magnetic field. First, the transition point will be 
shifted into the region of higher tan y since the magnetic field stabilises the ferromagnetic 
state; the two-magnon instability will occur at 

(16) 
where H* = H/(-JZ  cos y ) .  Another effect is that the transition will now be continuous 
since switching of the magnetic field singles out one of the ferromagnetic vacuum states. 
The calculation of the longitudinal magnetisation and excitation spectrum requires 
knowledge of the single-particle condensate (bk=O) = (N)’/’(itp), (bk+=,,) = (N) 1/2(-itp) 
from the Hamiltonian (7)  with an additional term -H&Sf. The value of tp and, 
hence, ( S f )  = 2 q  can be determined by minimising the energy or, equivalently, by 
demanding all the diagrams with a single outer end to be equal to zero. At H* 6, we 
obtain I$ = H * / 2 6 .  After this has been done, two branches of excitations arise as a result 
of a simple diagonalisation of quadratic form and in agreement with the general idea the 
result at k < 1 is 

tan yc  = 1 + H*[ l  - {[2H* + (H*)2]1/2  - 3H*/2} / (4  - 5H*/2)D 

Now we return to the purely nematic phase ( H  = 0) to discuss the coupling constant 
renormalisation. The first step is to transfer from the initial operators a and b to the new 
operators c and d diagonalising the quadratic form in (7)  and to take the low-energy 
limit in the expansions of the vertex functions. When this is done, we obtain the following 
effective Hamiltonian: 

H - = E ;  (ck+ck + dkfdk)  + @ ( c l c i d i d 4 +  + d l d 2 ~ 3 ~ 4  
c k  

+ c T c i d 3 d 4  + d : d : ~ 3 ~ 4 )  + 2@(c:c :d td ,  + d l d 2 ~ : ~ q  

- c:d$d, fcz  - ~ i ~ q d l d 2 )  - 4@c:diczd4 

@ = [61’2(Z/2)1’2 / 8 ( ( k 1  IIk2IIk3 Ilk4 I)1’21(-Ik~ I I b  I + k 1 b )  

E ;  = Ik( 

(18) 
where 

(19) c = -J(262)”2 cos y .  

Diagrams which are responsible for the renormalisation are presented graphically in 
figure 3 .  As usual we shall be interested in temperature renormalisation in ZD and 
in quantum renormalisation in ID, when the perturbation theory is logarithmically 

Figure 3. Diagrams for the coupling constant renormalisation: -, Green functions for c- 
type bosons; ---, Green functions for d-type bosons. Note that ‘horizontal’ diagrams are 
absent. 
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divergent. Direct calculations show that the general structure of the effective Ham- 
iltonian survives after renormalisation but the interaction between two Goldstone 
bosons increases in passing to the low-energy limit; in the one-loop approximation the 
coupling constant (i.e. the coefficient g in the front of klk2 in (19)) increases as 

(1 - TL/2n.f) -l . f=J i cosy l=J /V/2  D = 2  
1 - L/nS s = 6 -112 D = 1  T=O 

where L = ln(A/k) (A is the inter-atomic spacing) and, as a result, fluctuations generate 
the inner scale 

R ,  - {A exp(n.fZ/2T) 2D 

A exp(nS) 1D 

below which the perturbation theory is invalid. Note that the next to leading corrections 
to the spin-wave velocity in the 2D case and to the 2-factor of the Green function in the 
ID case also contain logarithmically divergent (as Ink) terms. The corrections are the 
same as in the Heisenberg antiferromagnet [3,18]. There are no reasons to expect the 
increase in g to stop outside the limits of perturbation theory; the scale R, most probably 
determines the correlation length in the system and, hence, the mass gap immediately 
above the ground state. It thus appears that the continuous symmetry is completely 
restored by fluctuations. The open question is whether the same happens for discrete 
symmetries; in other words, is the ground state a singlet or is it twofold degenerate (i.e. 
dimerised)? Now it has been almost established by field-theory arguments [5], numerical 
calculations [19,20] and a recently published exact solution of the purely biquadratic 
model [21] that at least in the region 37612 G y < 7x14 the ground state is dimerised,? 
On the other hand we did not find any trials of instability which might lead to spontaneous 
dimerisation in the vicinity of the ferromagnetic lability point. The first-order transition 
from the ferromagnetic to the highly dimerised state also remains undecided since we 
cannot detect any dimerised state exactly at the critical point. We thus believe that the 
dimerised and ferromagnetic phases may be separated by the paramagnetic phase with 
a unique ground state, although this is a subject for further investigations. 

Now we discuss the fluctuation effects at the transition points y = 5x14 and y = y1 
when the nematic phase merges with the ferromagnetic and antiferromagnetic phases. 
We shall not be interested in short-wavelength renormalisation, i.e. we shall assume 
that y1 = 3n/2. The possibility of another type of behaviour at these points is connected 
with the increasing number of Goldstone modes; at y = 5n/4 the excitation spectrum 
consists of two branches, both quadratic in k (there is only one such branch inside the 
ferromagnetic phase), and at y = y1 both branches soften at the edge of Brillouin zone 
and the number of Goldstone modes in the bare spectrum increases from two (inside 
the nematic and antiferromagnetic phases) to four. We start with y = 5n/4 (6 = 0), 
when the Hamiltonian describes the system of two interacting ferromagnets with S = f. 
The temperature renormalisation of the vertex is shown in figure 4 and the result is 

g = (1 - 3TL/2n.y .f= Jlcosyl = J/d/z. (22) 
The coefficient in front of L is three times greater than in equation (20) and 1.5 times 

greater than for non-interacting S = i ferromagnets. Hence the correlation length is 

t The conjecture that the gap exists on both side of the integrable point y = 7n/4 [22,23] was first made in 
[2] and later confirmed by a number of numerical calculations [24]. 
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Figure 4. Diagrams for the tem- 
perature renormalisation of the 
coupling constant at the transition 
point between the ferromagnetic 
and nematic phases. The desig- 
nations are the same as in figure 3. 

smaller than inside ferromagnetic and nematic phases: 

R ,  - A exp(2nj/3T). 

Now we turn to y = 3n/2. In order to obtain the effective Hamiltonian we must 
transfer to the two-sublattice structure that demands the introduction of four types 
of bosons. The effective Hamiltonian now describes the system of two interacting 
antiferromagnets with S = 8. When the phase factors are not taken into account (see 
[4]) the result is 

H o  = JZ(Hl  + H 2  + H,,,) (23) 

H1 = ( a k + a k  f ck+ck) - vk(akC-k + aic'k) 
k 

+ 2 (c:c:a:c4 + a:a;cla4>.3 - 2 c  a:c:a3c4v2-4 (23a) 
k ,  k ,  

Hz = (bk+bk + did ,<)  - Vk(bk+d?k + bkd-k) 
k 

+ 2 x ( b : b i d 3 + b 4  +d:d:b$d,)v, - 2Cb:d;b3d,v2-4 (23b) 
kt k ,  

H,,, = 2 x  (a:b:d;a, + c:d,fb;c4 + b:aic;b, + d:c;a:d4)v3 

- 2 2 (a:d2fa3d4 + b:c2fb3c, + b:d:a,c, + a:c;b3d4)v2-,. (23c) 
k,  

The one-loop renormalisation of the coupling constant is the following: 

(1  - 3 TL/2nJ) -' 2D 

(1  - 3L/n) - l  ID T =  0. R = {  

In both cases the coefficient in front of L is three times greater than inside the 
nematic or antiferromagnetic phases and 1.5 times greater than for non-interacting 
antiferromagnets with S = i. 

The answer in the ID case demands caution, because the doubling of the unit cell 
leads to the appearance of topological terms in the long-wavelength action. For the 
present we did not investigate their role in detail. 

At the end of this section we shall briefly discuss the situation at y = n / 2  when 
the whole branch of one-particle excitations becomes zero. One can check immediately 
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that the ground-state wavefunction I) at y = n/2 is again a multiplication of the wave- 
functions of separate spins ql and any state with = IS; = 0), for even 1 and 
ql = (IS; = 1) + alSf = --l))/m for odd 1 with arbitrary a is an eigenstate with 
energy equal to that of the ferromagnetic state. The structure arising beiow the critical 
point is a nematic state with a right angle between the selected axes for the nearest 
neighbours. This ground state was called an 'orthogonal' quadrupolar structure [8]. It is 
characterised by the existence of a whole branch of excitations with zero energy since 
the system is invariant with respect to rotation of a selected axis for a separate spin about 
the direction of this axis for its neighbour. The bosonic version of the spin Hamiltonian 
is now as follows (cos y > 0): 

where 6 = cot y and f i k  = (2i/Z)C, sin(kA). For simplicity, we put 6 = 0 in the anhar- 
monic terms. As follows from (25) ,  besides the branch with zero energy for all wavevec- 
tors ( E ;  = 0), the bare spectrum also contains the Goldstone mode E ~ P ~ O )  = 8'l2k. 
In particular, at the transition point E:,') = JZ(1 - vk). However, the cubic terms, 
which describe non-resonance transformation of an a-type boson into two excitations 
with zero energy, lead to strong renormalisation of the bare spectrum since in the 
limit of low frequency of the a-type boson the perturbation corrections diverge. The 
calculation of the a-boson dispersion relation requires us to solve the Dyson equation 
G;' = G , ;  - X(k ,  Q )  with I: given by the following sequence of ladder type diagrams 
(---- + = Gbl = -l/Q) 

The substitution of the solution of (26) into the equation for G;' gives 

G,' =JZ(1 - v k )  - Q + (J2Z)(l - v k ) / ( Q  - J )  

= [2Q/(Q - J)]{JZ[(Z + 1)/Z - v ]  - Q} 

i.e. when the cubic terms are taken into account the second branch of the spectrum 
acquires the gap ~ f )  = JZ[(Z + 1)/Z - v]. In the ID case this result coincides with the 
expression for the two-particle bound-state spectrum in the ferromagnetic phase at 
y j x/2 + 0 [ll]. At y = yf) = n/4 (this value was obtained without short-wavelength 
corrections) the orthogonal nematic structure merges with the antiferromagnetic struc- 
ture. Detailed calculations of the fluctuation properties of this phase were not carried 
out. 
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3. The model for S = f 

The generic exchange Hamiltonian for S = f is the following: 

H =  - J x [ S / ' S / + A  + P ( S / * s / + A ) 2  +y(s /*s!+A)3] .  (28) 
I ,  A 

The phase diagram in the P-y plane is much more diverse than for S = 1. Bearing in 
mind that we wish to show the difference between the integers and half-integers S, we 
shall focus our attention on the region near the boundary between the ferromagnetic 
phase and the nematic phase (4) at small y and positive P ,  y and J .  The calculation of 
the excitations above the ferromagnetic ground state [ 111 shows that the two-magnon 
bound state at k = 2n softens on the line 

1 - P/2 + 103~ /16  = 0. (29) 
The peculiarity of S = f is that the three-particle instability and, hence, the transition 

to the nematic phase (4 )  occur on the same line. In fact, one can easily make sure by 
direct calculations that any symmetrised state with an arbitrary number of flipped spins 
(ST = -S)  relative to the ferromagnetic vacuum (Sf = S )  is an eigenstate on the critical 
line with energy equal to that of the ferromagnetic state. Evidently the nematic phase 
(4)  will be the ground state below the critical line. In 3D this structure will be only slightly 
destroyed by temperature and quantum fluctuations. The corrections differ from those 
for S = 1 only by numerical factors. Below we shall discuss only the principal effects due 
to fluctuations, i.e. we shall consider the role of temperature fluctuations in the 2~ case 
and that of quantum effects in ID chains. 

The bosonic version of (28) is obtained by use of the modified version of trans- 
formation (3) .  The quadratic form in Bose operators is described by the expression 

H2 = J l Z { ( 1  - V k  + d*)(U:Uk f bk+bk) + d*vk(ak+b'k + Ukb-k) 

+ [ A ( l  - v k )  + 36*Vk]ckfck + 36*Vk/2(c;c!k + ckc-k)} (30) 
where, at y 1 and in the vicinity of the critical line J1 = 6 J ,  6 * = (P /2  - 1)/8,  A = 
3y/4. After the diagonalisation one obtains three Goldstone branches reflecting the 
spontaneous symmetry breaking: two branches with equal spin-wave velocities C1,2 = 
J1(2Z6 * ) 1 / 2  arise as a result of fixation of the anisotropy axis for quadrupolar correlations 
while the third Goldstone mode with C3 = C1,2(3A)1/2 arises because of the fixation of 
the angle of rotations about this axis (the anisotropy of cubic correlators). To simplify 
the expressions for anharmonic vertices, we shall omit the terms which give zero acting 
on physical states, and also cubic terms which only renormalise the coefficients. After 
doing this, we obtain the following expression: 

1 Hint = --E ( U : U i U 3 U 4  -k b:b:b,bd)(l + f6*)(V1-3 f V 2 - 3 )  
2 k, 

- c:c:c3Cq(Vl-3 + V2-3)  - x (a:cza3c4 + b:c;b3C4)2,1-4 
kL k ,  

- 2 x  (a:bz+a3b4)(Vl-3(1 + %a*) 

- 16" 

%6*V1-4) 
k, 

(a:b:c,c, + C3+Cq+b2al)(v1-4 + v2-4) 
k ,  
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+ d/$6* (a:a:c3b4 + b:b:c3a4 
k, 

+ c:b4+alu2 + ~ : a Z b ~ b ~ ) ( v ~ - ~  + vZ4). (31) 

The correct structure of each vertex (which is dictated by symmetry considerations) 
is restored when short-wavelength renormalisation is taken into account. In particular, 
we made sure that on the critical line the restoration of the form of vertices to that 
dictated by the Adler principle occurs in exactly the same way as for the bosonic 
version of Heisenberg ferromagnet with S = 2 obtained via the Holstein-Primakoff 
transformation with non-physical terms omitted [25].  However, below, we shall be 
interested only in coupling constant renormalisation. As the corresponding terms in the 
fourfold vertices are completely determined by the ‘physical’ part of interaction, the 
expression for the effective Hamiltonian can be obtained directly from (31) :  

= -(Z6*/2)1/2g0(klk2 - / ~ l l l ~ 2 1 ~ / ~ ~ l ~ l l l ~ 2 l l ~ 3 l / ~ 4  

& = - (326 * / 2 A )  1’2 go(klk2/2( Jk l  Ilk2 Ilk3 Ilk4 1 )  U 2 .  
(33) 

The bare values of the coupling constants g and g are equal to unity. 
The anharmonic terms with only t-type operators which form Elf?: are exactly the 

same as in the S = 2XXZ model after bosonisation. The corresponding order parameter 
is a complex scalar and, hence, the logarithmic renormalisation of t-type vertices is 
absent when only H!?: is taken into account. On the contrary, H;’: serves as an anhar- 
monic part of a system whose order parameter is a spin vector ana, thus, on passing to 
the low-energy limit the interaction betweenp and q excitations increases (the diagrams 
are presented in figure 5) .  In the one-loop approximation, 

i.e. it is reasonable to expect dynamic mass generation. 
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Figure 5. Diagrams for the coupling constants g(a) and g ( b )  renormalisations in generic 
model for S = 3: -, Green functions forp-type bosons; - --, Green functions for q-type 
bosons; Iv\T\, Green functions for t-type bosons. 

After all, describes the interaction between the vector and scalar parts of the 
order parameter. All the diagrams in figure 5(b)  have the same sign and lead to zero- 
charge behaviour of g: 

i.e. on passing to large scales the t-mode decouples fromp- and q-type bosons. 
As a result the low-energy excitations are completely determined by the scalar part 

of the order parameter. The critical behaviour is the same as in the S = $ X X Z  model 
with 

H =  -J1 (sl s l + A  - OSfS;+A), 
1, A 

where the role of CJ is played by 66*/il. In particular, in the ID case the correlation 
functions of S3 and S, decrease by a power law with the same 7 as transverse and 
longitudinal correlations in the X X Z  model correspondingly. All the other correlations 
decay exponentially. The distinction between these two correlation functions is pre- 
served in the 2~ case but now 7 - Tand the correlation length for other spin components 
contains Tin the exponent. 



Fluctuations in spin nematics 1607 

4. Summary and discussion 

We summarise briefly the main results of this work. 

(i) The ground state of the generic S = 1 exchange magnet may be realised in two 
nematic phases: collinear and orthogonal phases with different types of low-energy 
excitations. 

(ii) The perturbation theory is developed in the vicinity of the transition point from 
the ferromagnetic to the collinear nematic phase. The closeness to the critical point 
serves as a small parameter of the problem. The bosonisation was done using the 
transformation combining spin operators with 2S bosons. 

(iii) The analogues of the Mermin-Wagner and Coleman theorems are formulated: 
long-range quadrupolar (nematic) ordering is destroyed by fluctuations in ZD at finite 
temperatures and in ID even at T = 0. 

(iv) For S = 1 the perturbation theory in the ZD case at T # 0 and in the ID case at 
T = 0 is logarithmically divergent; the fluctuations generate an inner scale below which 
perturbation theory ceases to work. It is reasonable to propose that fluctuations continue 
to increase outside the limits of validity of perturbation theory, thus leading to dynamic 
mass generation. 

(v) The ferromagnetic lability point y = n/2 is specified by the existence of a whole 
branch of excitations with zero energy. All the other excitations have a gap. 

(vi) For S = $ (and for all other half-integers S) the quadrupolar phase is characterised 
by an additional symmetry breaking concerning the rotations about the selected axis for 
quadrupolar correlators. This follows from the Kramers theorem which demands that 
the states for half-integers S be antisymmetrical with respect to time reversal. Hence, 
the number of Goldstone modes in the bare spectrum is equal to three. In the ZD case at 
T # 0 and in the ID case at T = 0 the perturbation theory for the coupling constant is 
logarithmically divergent and as a result of calculations the low-energy behaviour is 
completely described by gapless excitations connected with the scalar part of the ordered 
parameter. Note that for S 2 # we expect the other phases with more complex order 
parameter (e.g. of the type considered in [26]) to appear in generic phase diagrams in 
the spaces of 2S - 1 parameters. We also mention that in some sense the nematic 
structures serve in connection with fluctuations as an intermediate between Heisenberg 
antiferromagnets and the systems with large single-ion anisotropy; the logarithmic 
increase in the coupling constant is supported by the vector part of the order parameter 
(as happens in antiferromagnets) while the difference between the integer and half- 
integer spins is due to the difference in the structure of states for a separate spin in 
agreement with what happens in systems with large single-ion anisotropy (see e.g. [22]). 
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